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Introduction 

This document is the result of a Performance Committee of the Rainscreen Association in 

North America (RAiNA) request for a literature review on rainscreen performance to 

provide a baseline of knowledge.  At the end of this document is a comprehensive list of 

almost 400 pieces of literature relevant to rainscreen performance along with some brief 

comments.  The information collected is grouped into 7 different categories, a summary 

of the state-of-knowledge is provided for each, and questions that could benefit from 

further research are provided. 

Scope and Approach 

RAiNA has recently defined a Rainscreen
1

 Wall Assembly as  

an assembly applied to an exterior wall that consists of, at minimum, an outer 

layer, an inner layer, and a cavity between them sufficient for the passive removal 

of liquid water and water vapor.  

The focus of the review was wall assemblies that meet this broad definition, the building 

science governing their performance, and testing and evaluation of them. 

An important part of the work was selecting what kind of literature should be included. 

The performance of an enclosure wall is, of course, multi-faceted and includes aspects of 

structural performance, material durability, fire resistance, and aesthetics. Moisture 

control (primarily rain), specifically drainage and ventilation drying were to be a focus. A 

decision was made to exclude categories of information such as cladding attachment, 

thermal performance, and fire resistance along with aesthetics, and thermal bridging.  

However, many of the documents listed do cover some of these aspects—these 

documents are included because they offer valuable information or consensus about 

other aspects of rainscreen performance. 

Although there are many overlapping categories of technical knowledge, seven primary 

categories of information were identified and used to collect and summarize the 

information. 

• Topic 1 Rainscreen design guidelines / general cladding 

• Topic 2 Drainage behind cladding, Water Resistive Barriers (WRBs) 

• Topic 3 Ventilation & drying behind cladding 

• Topic 4 Pressure equalization (benefits to structure and / or rain) 

• Topic 5 Testing and evaluation  

• Topic 6 Rain penetration mechanisms, all modes 

• Topic 7 Climate and exposure influences 

A summary of important findings for each of these seven topics is provided below.  

 

1

 As rainscreen is a term that has not had a fixed definition over time or between different locations, 

many documents do not even use the term. Essentially the same definition has been proposed for 

inclusion in the 2024 International Building Code 
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A bibliographic list of reference documents is provided at the end of this report. Many of 

the sources referenced are technical papers, presented at technical conferences or in 

peer-reviewed journals, or reports by research organizations. Relatively few of the sources 

include books or industry guides, but these can be quite important because of their 

widespread accessibility and lasting permanence.  Very few sources are from magazines 

or manufacturers’ literature as these rarely include significant technical content.   Some of 

the listed documents include standards for performance testing and evaluating rainscreen 

assemblies. 

The bibliography provided at the end of this report include codes indicating which 

categorization they fall into (and often there is more than one). These two-character 

codes, designed to facilitate software searches, begin with the letter Z and end with the 

topic number. 

Topic 1: Rainscreens and General Cladding 

Early History of Rainscreens 

Some of the concepts around rainscreens are not new, although not widely deployed in 

practise or described rationally and scientifically until more recently. For example, 

Vitruvius, in his Ten Books of Architecture, (Vitruvious 1914) written 2000 years ago, said 

“…if a wall is in a state of dampness all over, construct a second thin wall a little way 

from it….at a distance suited to the circumstances….with vents to the open 

air….when the wall is brought up to the top, leave air holes there.  For if the moisture 

has no means of getting out by vents at the bottom and at the top, it will not fail to 

spread all over the new wall”. 

This certainly emphasizes ventilation drying and recommends a capillary break but does 

not discuss drainage, air barriers, or pressure equalization. 

The true modern rainscreen literature begins with a 1946 paper by the Swede C.H. 

Johansson [1946]
2

. This seems to be the first reference to a screen:  

“...it is clearly unwise to allow walls, whether of brick or porous cement, to be exposed 

to heavy rain. They absorb water like a blotting paper, and it would therefore be a 

great step forward if an outer, water-repelling screen could be fitted to brick walls, 

with satisfactory characteristics from the point of view of appearance, mechanical 

strength and cost. This screen could be applied so that water vapour coming from 

within is automatically removed by ventilation of the space between wall and screen.  

If a rain screen of this type is used, the thermal resistance of the wall can be 

considerably increased for only a slight increase of expense, by employing one of the 

highly porous, thermally isolating materials now obtainable. With a highly porous 

layer between the actual wall and the rainscreen, the house would retain its good 

characteristics as regards heat capacity, sound isolation and fire risk.” 

Many researchers in the post-war period accepted the merits of this multi-layer approach 

and began to do work on the concept.  Hutcheon, in his seminal 1953 paper [Hutcheon 

 

2

 References to specific literature or documents will take the common form of “[Author, year]” unless 

the sentence includes the author already, in which the reference will be “[year]”. The bibliographic list 

at the end of this document is arranged alphabetically by author. 
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1953], Fundamental considerations in the design of exterior walls for buildings, he quotes 

directly from Johansson, but expanded the conversation to include other building 

performance factors, such as temperature differences, condensation, differential 

movement, etc. In Canada, Ball [1956] also introduced the idea of walls comprised of 

multiple layers. 

Garden [1963], in his influential 1963 Canadian Building Digest, Control of Rain 

Penetration stated: 

“In essence the outer layer is then an “open rain screen” that prevents wetting of the 

actual wall or air barrier of the building.”  

He began the serious discussion of air pressures and pressure equalization but makes no 

mention of drainage. 

In Norway, Svendsen [1967] produced a paper describing the two-stage weather 

tightening approach. In the figures of his paper (Figure 1) the term rain barrier (not 

rainscreen) is used and the term wind barrier (was air barrier meant?) on the exterior of 

the insulation is identified, with an interior vapour barrier.  No drainage or water resistant 

“drainage plane” is identified. 

 

Figure 1: Two-stage Weathertightness from Svendsen (1967) 
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By 1968, Birkeland [1968] had developed a concise understanding of the principles of 

rainscreens (although he applied the label to the cladding), one which was applied in 

practice to joints, not walls: 

“On the basis of the knowledge of rain and wind penetration presented in this paper, 

a principle for designing weathertight joints is given. The rain and wind must be 

stopped separately. There must be an exterior rain screen, behind which is an air 

space that is ventilated so there is no wind pressure drop across the rainscreen. 

Behind the ventilated air space should be an airtight wind stop to prevent air from 

penetrating through the wall.” 

Modern Rainscreen Era 

A significant amount of knowledge about the performance of rainscreens was gained and 

documented prior to the 1970’s. Most of this early literature focused on pressure-

equalization, with ventilation and drainage rarely mentioned as strategies. This context 

must be understood when assessing performance today. A profound change in rain 

penetration control (and hence rainscreen design and research) occurred in North America 

between about 1990 and 2010. Building codes, design standards, even testing changed 

during this time to include dedicated water resistant layers and drainage as key elements. 

The same change is underway in Europe, but has only begun in some circles. 

As rainscreens became an accepted and often preferred approach in research and 

academia, practical industry-focused guides began to be produced. This topic also 

included influential documents that provided recommendations for all kinds of enclosure 

walls or those that highlight rain control failures of walls.  

In the early days of research (e.g. before 1960) rainscreen quickly took on the meaning of 

“pressure equalized” rainscreen. Today, the term often implies, but does not state, that a 

larger gap exists behind the cladding which is often ventilated.  This change in use of the 

term and the lack of clarity and precision has caused significant confusion over time and 

between Europe and North America.  

The curtainwall industry was an early adopter of the term rainscreen, and their explicit 

use of the rainscreen principle.  American Architectural Manufacturers Association (AAMA) 

[1971] The Rain Screen Principle and Pressure-Equalized Design Details of Three Recent 

Buildings, was the first industry association guide followed by several other guidelines 

and recommendation documents. All of these relied heavily on Garden’s [1963] 1963 

Digest.  Subsequent work by Latta [1973], Killip & Cheetham [1984] and others at 

NRC/IRC provided more science- and measurement-based advice for designers.   This 

resulted in an internal report entitled Review of design guidelines for pressure equalized 

rainscreen walls [Baskaran & Brown 1992] which was widely disseminated in Canada.    

The influential British book Rainscreen cladding: a guide to design principles and practice 

by Anderson and Gill [1988] fills the role of a design guide. This book identified the three 

approaches to rain penetration control – described as mass, fully-sealed, and rainscreen -- 

and then described pressure-equalized walls and “back ventilated” walls as separate 

rainscreen approaches. This document focused on pressure equalization performance, 

mentions ventilation, and rarely mentioned drainage or water resistant layers. The 

drawings in this guide (e.g., Figure 2) do not include water resistant layers, just cladding, 

insulation, structure, and interior finish. 
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Figure 2: Rainscreen wall concept from Anderson and Gill [1988] 

The AAMA released a slightly updated guide in 1996 (with an editorial revision in 2004) 

with advice that is also mentioned briefly in their 2005 Curtainwall Design Guide which 

continued to rely on research conducted before 1970. However, the updated 1996/2004 

AAMA guide begins to apply modern language and understanding: 

“Pressure equalization should not be confused, as some designers may do, with the 

more “conventional” and long accepted “theory of secondary defense,” depending on a 

drainage system within the wall–a theory which, when properly applied, has also 

proven to be dependable”. 

By 1999 the National Research Council of Canada’s forty-years of research on the topic 

culminated in a concise document (hardly a design guide) by Brown et al [1999] that 

focused its recommendations on the “second-line of defense” and mentioned drainage as 

an important element alongside a passing mention of pressure-equalization as a rain 

control strategy. Very similar advice was given in Rousseau [1998]. This was a major 

change in emphasis.  The focus on pressure-equalization as part of rainscreen 

recommendations that had been in industry guides such as Canada Mortgage and 

Housing Corporation publications [e.g., Drysdale 1991, Morrison Hershfield 1998] faded 

in the 2000’s. 

The term “rainscreen” does not occur in major North American building codes except in 

the explanatory appendices of the Canadian National Building Code (first in the 2005 

NBCC and unchanged today) which mentions pressure equalization but does not discuss 

drainage, flashing, cavities, or ventilation. Rainscreen assemblies, are described in 

Appendix A (A-9.27) of the NBCC: 

“… rainscreen assemblies include both a first and second plane of protection. The first 

plane comprises the cladding, which is designed and constructed to handle virtually 

all of the precipitation load. The second plane of protection is designed and 

constructed to handle only very small quantities of incidental water …” 

In Europe, the International Federation for the Roofing Trade [2018] has developed a 

Guideline for Design and Installation of Rear-Ventilated Rainscreen Façades document as 

recently as 2018. This guideline mentions the drainage function of the cavity in passing 

and explicitly states that “membranes” (assumed here to mean a Water Resistive Barrier 



 

Page 6  

(WRB) or air barrier) are not required in properly designed and built assemblies. This is a 

major, even fundamental, difference in approach from the recommendations and codes in 

North America.  

 

Figure 3: Definitions of “Rear-Ventilated Rainscreens” from IFD (2018) 

Summary and Recommendations 

When reviewing the literature is important to note that the terminology used at different 

times and by different countries must be borne in mind. Even today, the use of terms as 

common as WRB and air barrier can have different meanings in North America than 

Germany, and the way these terms were used has changed significantly.  The RAiNA 

Definitions Committee is helping to reduce the uncertainty and imprecision of the 

language in future, but interpreting the true meaning of both current and historical 

terminology remains a challenge. 

Terminology varies significantly between different countries, different types of 

manufacturers, and different times of writing. Care must be taken to interpret information 

and the development of modern consensus definitions is a helpful step forward. The 

difference in terminology and rain control philosophy used by Europeans and 

Scandinavians should be resolved in some manner, possibly by striking an international 

working group. 

There are no up-to-date and modern design guidelines in North America for designers and 

specifiers, particularly none that applies to opaque assemblies other than metal 

curtainwall frames.  Such a guidance document would certainly be useful. 

Topic 2: Drainage and Water Resistant Barriers 

One of the cornerstones of modern North American building science is that enclosure 

walls use drainage as a strategy and hence include drainage planes (more properly, water-

resistant barriers WRB’s) to manage rainwater penetration through the cladding (Figure 4).  
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Based on the literature review, it should be noted that: 

1) drainage as an explicit mechanism is a rather recent focus in design, and  

2) many modern and successful enclosure systems such as Insulated Metal Panels, 

Insulated Glazing Units, Architectural precast concrete, low-slope membrane roofs
3

, and 

below-grade waterproofing are all perfect barrier systems that do not rely on drainage to 

perform.   

 

Figure 4: Conceptual Drained Wall 

A limited awareness of the historical development of enclosure wall rain control has led to 

confusion about: 

• the role of gaps behind cladding,  

• the meaning of common terms such as WRB, and  

• a belief that drainage is the only or best rain control strategy for all enclosure 

assemblies. 

Some of the early researchers clearly understood the importance of gravity and the need 

for drainage. For example, the Norwegian scientist Isaksen [1965] was aware that water 

could cross an air gap at door and window penetrations and of the importance of 

drainage. He wrote: 

“Our model tests showed that the air leakages had to be very great and concentrated 

if they managed to tear off water from surfaces. In the cladding case the water will 

run down on the inner side of the cladding and stick to it, it will not jump across the 

air space. It can, however, be led over to the back wall when the drainage is bad, i.e. 

via door- or window frames. A wind pressure potential across the air space is 

 

3

 Low-sloped roofs, of exposed membrane or protected membrane design, rely on the perfect 

barrier approach to rain control. Of course drainage can occur across the water control layer in 

all systems, face-sealed, mass, or otherwise, but by definition these systems do not require 

drainage to perform adequately as an enclosure system.
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therefore not the reason for water penetration through the wall when the cladding 

has closed joints. A faulty design of drainage and/ or holes in the wind barrier are 

usually the main cause, the water simply flows into the wall by gravity”.
4

   

Herbert [1974] from the UK Building Research Establishment (BRE) wrote: 

“It is important to realise that, however well they are designed and built, rain screen 

walls will allow some water to cross the cavity, and will also allow some water to 

drain down the back face of the screen.”  

Although this quote might suggest an emerging interest in drainage planes and water 

resistant barriers (WRBs), it is difficult to find any mention of a water barrier, water 

resistant material, or equivalent in the literature of that time. 

Garden, who wrote early influential papers about pressure equalization and rain control 

[1963], was well aware of the importance of drainage, as he indicated in a research paper  

[Garden 1967]: 

“It was recognized that in the United Kingdom a masonry wall would inevitably leak, 

thus cavity wall construction was adopted. With a properly drained clear space 

between two walls, the outer wall leaked as anticipated but the inner wall remained 

dry.” 

Not only was drainage little discussed, water resistant barriers (WRB) of any type were 

absent from the discussion and design drawings in this era.  Garden also described 

effective rainscreens as “two-stage weather tightening” (adopting Svendsen’s label, as 

many others did) with the help of case studies [Garden 1971]. Neither a water-resistant 

layer nor drainage is mentioned or labelled on the drawings he produced (Figure 5).  The 

building paper widely used behind shingles in walls was labelled an air barrier, a label 

current building scientists would not use. 

 
Figure 5: Drawing of a rainscreen from Garden (1971) 

 

4

 Note “wind barrier” here is the building paper (common terminology in Scandinavia at the 

time), which is also assumed to be the primary air barrier – showing how language and 

performance expectations can be very different.  
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As another example, the drawings in Latta’s Canadian design handbook [1973] shows an 

air barrier and an exterior “rain barrier”: the water resistant barrier (aka drainage plane, or 

second-line of defense) assumed in modern walls and required by modern American and 

Canadian codes is conspicuously absent from drawings of this era.  

An excellent representative example of the 1981 state-of-the-art comes from a Canada 

Mortgage and Housing Corporation (CMHC) advisory document by Plewes [1981]. 

Although the document takes care to document the needed components of a wall, and 

applies modern principles of building science, the drawings of masonry walls show no 

membrane applied as a drainage plane (Figure 5). The parged masonry inner-wythe was 

considered sufficient as both the air and water barrier (field experience showed it too 

often was not sufficient in situations with high exposure or poor workmanship [Cutlet 

1980]). 

 

Figure 6: Note the careful and precise detailing (and code clauses) of masonry, weep 

holes, flashing, air barrier and vapor barrier, with no discussion of water resistant 

barrier or drainage [Plewes 1981] 

A state-of-the art book by Ronald Brand (1990) showed excellent detailing, but focused on 

the need for an air barrier, a cavity to prevent water bridging, and pressure equalization. 

No water resistant barrier (WRB) or explicit drainage path was discussed or shown 
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(although implicitly the flashings and air barrier membranes often provided that function).  

However, even at this date the role of pressure equalization as rain penetration control 

was beginning to be questioned:  

“In the case of masonry, so much water leaks through the brick cladding with no 

pressure difference across it that it is doubtful pressure equalization would have 

much additional effect” (p. 178) 

A major change in rain penetration control thinking began in the 1990’s when it became 

widely accepted that both air and water barriers were needed in all walls, whether 

ventilated or pressure-equalized, or, for that matter, whether they were rainscreen, 

barrier, or mass walls.  Practitioners perhaps because of widely publicised rain control 

failures (in for example, North Carolina and Vancouver, B.C.) were driving drainage as the 

primary rain control strategy. 

As early as 1990, practitioners such as Stephen Ruggiero of the leading building science 

firm Simpson Gumpertz & Heger identified that drainage was a critical factor in rain 

penetration control. Specifically, he stated [Ruggerio 1991]: 

“Our experience in evaluating and testing various wall systems is that much of the 

leakage can be replicated by allowing water to flow over the wall system without 

application of a differential pressure across the wall, i.e., wind pressure”. 

The importance of drainage was a key lesson learned by the wider North American 

industry from the failures that began to become prevalent in the mid-1980s, such as the 

Vancouver leaky stucco condo crisis and the North Carolina EIFS (Exterior Insulation Finish 

System) failures.  

From 1990 publications begin to appear, again first from practitioners, about how one 

could measure and test drainage in walls [Krogstad 1990, Brown et al 1997, Karagiozis 

2002]. The research into drainage continued in the early 2000’s [Straube et al 2000, 

Smegal 2006, Straube & Smegal 2007, Onysko 2007] and has subsequently been picked 

up in Europe [Van Linden at al 2018, 2022].  

It took until 2009 for Krogstad’s method for masonry veneer walls to become an official 

ASTM Standard, C1715-09, whereas a method for EIFS drainage measurement (ASTM 

E2273) was approved as early as 2003 because of the pressing need created by the North 

Carolina EIFS failures.  

The concept of a “second line of defense”, usually provided by a water-resistant layer 

(most commonly a building paper or housewrap) was accepted as minimum performance 

and integrated into all major North American building codes over the period of about 

1995 to 2003 for almost all wall types. Unlike “two-stage weather tightening”, which 

ascribed different functions to the inner and outer layers, the second line of defence 

philosophy focused on a water-resistant layer behind the cladding (the first line of 

defense). The National Research Council of Canada’s Institute for Research in 

Construction, a primary advocate of pressure-equalization, developed the new strategy 

and helped bring it into Canadian codes. 

Dr Michael Lacasse, of Canada’s National Research Council’s Institute for Research in 

Construction (NRC/IRC), led a major project investigating the rain penetration resistance 

of residential systems in a methodical way, beginning in 1998.  Lacasse reported on lab 
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test results that showed a water-resistant barrier or “second line of defense” was needed 

even with a large cavity (i.e., 10 mm or more) behind the cladding.   He wrote [2003]: 

“Interestingly, the IRC test results also indicated that even with the presence of this 

clear drained cavity behind the cladding, a small quantity of water could still find its 

way into the stud cavity.”  

and 

 “Even when an air space was present behind the cladding system, it was beneficial to 

ensure that the component of the assembly acting as second line of defence, be it a 

water-resistive membrane or a board stock material, be attached in a water-resistant 

manner.”  

His conclusions are in some ways a rediscovery of what Isaksen and Herbert concluded 

(see the earlier quotes from 1965 and 1974).   

The awareness of the primacy of drainage over pressure equalization also focused 

attention on WRB (which was also sometimes called the underlay or the drainage plane).  

In the same Ruggiero article referenced above, the importance of a secondary plane of 

water tightness was highlighted and it was concluded this was more important than an air 

barrier (though one was still needed) for rain penetration control. 

As early as 1997, Bill Brown, of NRC/IRC and previously the author of numerous 

publications focused on pressure equalisation, began to release a series of papers that 

investigated pressure equalisation, drainage, and rainwater management in general 

[Brown et al 1997].  He tested several enclosure wall systems with small drainage gaps (3 

mm or 1/8” wide and smaller) and developed methods to measure drainage.  Numerous 

peer-reviewed international research papers and university theses over the last 20 years 

have reported experimental results demonstrating that even gaps of less than 1 mm 

(1/16”) can be used to provide effective drainage -- Tonyan et al [1999], Straube et al 

[2000], Weston et al [2001], Smegal [2007], and van Linden [2018, 2022].  

Although research has unequivocally shown that small gaps allow drainage, small gaps 

also may retain water at the bottom of a drainage space because of capillary forces. For 

gaps of 1 mm width this amounts to storage of up to 20 mm of water and thus 20 mL per 

meter length (less than one ounce per yard of wall length). 

 WRB and Building Codes 

The first US building code to explicitly mention drainage and Water Resisitve Barrier (WRB) 

provisions was the 1999 National Building Code of the Building Officials of America 

(BOCA) which required: 

The exterior wall envelope shall be designed and constructed in such a manner as to 

prevent the accumulation of water within the wall assembly by providing a water-

resistive barrier behind the exterior veneer as described in Section 1406.3.6 and a 

means for draining water that enters the assembly to the exterior of the veneer... 

The first nationally adopted code in the United States was the International Residential 

Code of 2003.  It also used the term water resistive barrier: 

The exterior wall envelope shall be designed and built … to prevent the accumulation 

of water within the wall assembly by providing a water-resistive barrier. 
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Unlike the US, the term Water Resistive Barrier does not occur in Canadian codes. The 

product category label of sheathing membrane is used in Part 9 of the code (prescriptive 

design), but the philosophy of a “second plane of protection” is embodied as a 

requirement in the NBCC starting from 2005.  

“The second plane of protection shall consist of a drainage plane having an 

appropriate inner boundary and flashing to dissipate rainwater to the exterior.” 

The relevance of drainage was recognised
5

 by the National Building Code of Canada in 

1995, when it required [NBCC 1995]: 

5.6.2.1 Except as provided in Sentence (2), materials, components, assemblies, 

joints in materials, junctions between components and junctions between 

assemblies exposed to precipitation shall be 

(a) sealed to prevent ingress of precipitation, or 

(b) drained to direct precipitation to the exterior. 

This was further explained in the Appendix: 

A-5.6.2.1. Sealing and Drainage. Providing a surface-sealed, durable, watertight 

cover on the outside of a building is difficult. Where there is a likelihood of some 

penetration by precipitation into a component or assembly, drainage is generally 

required to direct the moisture to the exterior. 

Summary and Recommendations 

During the historical development of rainscreens the importance of drainage was 

recognized and the limited role of air pressures driving rain penetration identified.  Today 

the North American building industry accepts that a WRB, integrated with flashing and 

weepholes, is a minimum requirement.  However, there is a difference of philosophy in 

Europe, where large gaps are seen as sufficient to prevent the passage of rain water. This 

difference should be resolved and publicized. 

A consensus outcome of drainage research over the last almost 20 years is that small 

gaps, e.g. in the order of 1 mm or 1/16”, can provide good drainage.  

As water can be stored on and in materials lining the drainage gap, drainage tests on 

different types of walls can have very significant differences in results, differences that 

may have no impact on drainage performance. The method by which water is injected, the 

size of the specimen, the water application rate, and the duration of the test will have 

major impacts on the results. These differences require more research to understand. The 

ASTM E2273 test may be appropriate for EIFS, but its use for different assemblies that 

have absorbent materials lining the drainage path is questionable. Development of a more 

universal drainage effectiveness test would be desirable. 

  

 

5

 The requirement for drainage was not identified in the 1990 NBCC. 
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Topic 3: Cladding Ventilation 

Ventilation, the exchange of air in the cavity behind cladding with the outdoor air, is a 

strategy long used in both walls and roofs. However, the scientific study of ventilation, 

especially its ability to remove moisture from the cavity, was not considered seriously 

until relatively recently.  

 

Figure 7: Ventilated and Drained Wall Cladding Concept 

Some study of the ventilation was undertaken in Germany as early as 1973 by Schwarz 

[1973] and Frank [1973] followed by some seminal work by Popp [1980] and Kuenzel 

[1983]. A series of books about ventilated light-weight cladding were written in Germany 

[Liersch 1984] for practitioners but most of the guidance was related to implementing 

such systems under the then current building codes with only some detail about 

estimating ventilation airflow. 

 

Figure 8: Field ventilation drying results [Popp 1980] 
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Although research demonstrating effective ventilation drying dates to at least 1940 

[Rowley et al 1940, 1949] in North America, it was only in the 1990s that ventilation 

behind cladding began to be studied again as a potentially important drying mechanism 

by Ten Wolde [1992] and Straube & Burnett [1995, 1998]. A major multi-institutional 

study sponsored by ASHRAE [Burnett, Straube & Karagiozis 2004, Van Straaten 2003] 

combined field measurements, laboratory testing, and computer modeling to develop and 

validate methods that can predict airflow and the drying that can be generated. 

A significant amount of experimental work has since replicated, validated, and extended 

this earlier work in New Zealand [Basset & McNeil 2006 and 2009], Europe [Falk & Sandin 

2013, Nore et al 2005, Gudum 2004], and North America [Simpson 2010, Tariku 2011].  

Research that does not challenge the wall with additional moisture (either by building 

walls with defects or injecting controlled water “leaks”) tend to find little benefit of 

ventilation (Hansen 2002, Kehl et al 2010). 

Field research and analysis shows that very small amounts of ventilation can bypass the 

vapor resistance of vapor impermeable claddings like metal and glass. Ten Wolde et al 

[1998] and Straube & Burnett [1995] developed theory to predict the equivalent vapor 

permeance of a cladding material as a function of ventilation and cladding material 

(Figure 9). Moisture storing cladding systems, such as those made of fibre cement and 

stucco, or enclosures sheathed with wood, can benefit from ventilation drying [Straube et 

al 2004, Finch & Straube 2007] at modest air flow rates.  The volume needed for 

meaningful cooling of solar gains is very high and rarely effective in practical assemblies. 

 

Figure 9: The relationship of ventilation flow and equivalent vapor permeance for 

different claddings [adapted from Van Straaten 2004] 

For most wall systems the primary driving force driving ventilation air flow is solar 

buoyancy (which coincides with the majority of drying), although wind generates the 

highest peak pressures.  The primary resistance to airflow, and hence the design element 

with the biggest effect on flow rates, are the vent openings and details.  

It is important to note that there is a consensus in the literature that providing a vent only 

at the bottom of the cavity behind the cladding is not sufficient to achieve ventilation 
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drying: a vent must be provided at the top and bottom to allow meaningful amounts of air 

to flow behind the cladding. 

Although not well researched, analysis [Van Straaten 2003, Rahiminejad and Khovalyg 

2022] strongly suggests that normal ventilation rates behind cladding systems has only a 

modest, usually negligible impact on R-value. Despite the limited research, the underlying 

physics of heat flow combined with a few physical measurements are unequivocal.  

Ventilation flow rates through most cladding systems are small enough, and the thermal 

resistance of even still air low enough, that ventilation of an airspace does impact the 

assembly value. Of course, if the same amount of airflow were to penetrate through the 

enclosure, rather than circulate behind the cladding, the impacts on enclosure thermal 

performance would be very significant and problematic. 

3.1 Summary and Recommendations 

Reasonable methods to predict ventilation air flow behind generic cladding have been 

documented, field validated, and replicated.  It would be helpful to measure the behaviour 

of systems with complex (e.g., horizontal girts) and small air cavities to expand our 

knowledge. 

There is little guidance on which systems require ventilation to perform acceptably, which 

benefit from ventilation, and which are not impacted.  Although the research already 

conducted provides a wealth of information, it has not been summarized and placed in a 

general form for use by designers. 

There is a useful collection of data on the nature and magnitude of air pressures that will 

drive ventilation air flow. However more field measurements of different systems on 

buildings with a range of exposures would be helpful to develop general consensus 

methods of prediction.  The data already documented should be more widely 

disseminated. 

Standard methods of measuring the resistance to airflow should be developed to allow for 

designers to select systems with the amount of ventilation desired or required. 

Topic 4: Pressure Equalization 

RAINA’s Definitions Committee recently defined pressure equalization as a performance 

state whereby the wind-induced pressures on the face of a cladding is exactly equalized 

by air pressure behind the cladding. This state is desirable both because a) it reduces the 

structural loads the cladding needs to be designed for and b) because it eliminates air 

pressure as one of the forces causing rain penetration of the cladding.  



 

Page 16  

 

Figure 10: Conceptual pressure equalized wall concept 

Garden, in his influential Canadian Building Digest Control of Rain Penetration [Garden 

1963] stated that is pressure equalization could be achieved: 

“In essence the outer layer is then an “open rain screen” that prevents wetting of the 

actual wall or air barrier of the building.”  

He began the serious discussion of air pressures and pressure equalization, a topic 

investigated by many building research establishments in the 1960’s (note, there is no 

mention of drainage or WRBs). 

The curtainwall industry grasped the rainscreen principle and pressure equalization early 

on, perhaps because they could benefit the most. The AAMA publication The Rain Screen 

Principle and Pressure-Equalized Wall Design [AAMA 1971] was a seminal document that 

informed many manufacturers and practitioners. Here the authors defined rainscreen “the 

component” as distinct from the rainscreen “the principle”.  

“The rain screen principle may be defined as a theory governing the design of a 

building enclosure in such a way as to prevent water penetration due to rain; in other 

words, a scientific approach to eliminating water leakage.  

What is referred to as the “rain screen” is the exposed outer skin or surface element of 

the wall, backed by an air space and so designed that it shields the wall joints from 

wetting. It is made resistant to water penetration, not by sealing its joints and 

openings but by eliminating the pressure differences – or equalizing the pressures – 

occurring on its inner and outer surfaces, while the primary wall joint seals are 

removed from this outer wall face to the inner part of the wall., where they are kept 

dry. Thus, instead of the joint seals being subjected to both water and wind pressure, 

a two-stage protection is provided; the rain screen shielding against water 

penetration and the joint seals only against air penetration”.  

and …. 

“It should be recognized, to begin with, that the terms “rain screen principle" and " 

pressure-equalized design," though closely related and, in fact, interdependent, are 

not strictly synonymous. The "rain screen" is only the outer skin or surface of a wall 

or wall element - the part exposed to the weather. The "rain screen principle" is a 

principle of design which prescribes how penetration of this screen by rain water may 
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be prevented. Thus, the use of the rain screen principle is essential to achieving a 

pressure-equalized design, and conversely, a pressure-equalized design depends on 

this principle”.  

Pressure equalization began to be understood as only part of a wall design by Canada’s 

NRC/IRC in a 1998 publication of entitled Pressure equalization in rainscreen wall 

systems [Rousseau and Brown,1998] which concluded:  

 “PER [pressure equalized rainscreen] walls are not only about pressure 

equalization across the rainscreen. Other forces are at work as well, not the least of 

which is gravity; their control is part of the PER wall strategy for rain penetration 

control in exterior walls. One should assume that some rain will enter at some time 

during the service life of any wall assembly; that water must be disposed of quickly. 

Drainage of the air compartment is an important feature; properly detailed and 

sloped flashings and drainage channels are necessary for that reason”. 

Although not always written, and often forgotten by practitioners, there is in North 

America a wide-spread acceptance that pressure equalization cannot exist on its own as a 

rain control strategy as it can neither manage all rain penetration mechanisms nor does it 

perform perfectly all the time. Pressure equalization is always a complementary addition 

to the fundamental drainage approach to rain penetration control. 

As noted in Topic 1 of this document, Baskaran of NRC [1992] summarized the state of 

the art in the early 1990s and proposed a series of research questions.  Much was already 

known by that date, but additional research around the world has improved 

understanding of pressure equalization. 

 

Figure 11:Components of a Pressure-equalized Rainscreen Wall from Baskaran [1992] 

A complete and detailed field study of a high-rise building with a small chamber, very 

stiff, very airtight, and well compartmented assembly was conducted by Ganguli & 

Dalgliesh [1988]. They found: 

 During periods of high wind, maximum gust pressures (both inward and outward) 

ranged from 400-475 Pa (8.4-9.9 psf). However, the largest wind-induced pressure 

differences across the rain screen lasting several seconds or more were only 50-60 Pa 

(1.0-1.25 psf).  
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Brown et al [1991] field tested an average quality (for the time) brick veneer steel stud 

system designed to be a rainscreen. Measured performance ranged from 35 to 65% 

pressure moderation. Field measurements of well-vented and compartmentalized brick 

veneers at the University of Waterloo studied performance in the frequency domain 

[Straube 2001]. He found good equalization at average pressures (over 95%) but poor 

(less than 50%) moderation of wind gusts. Kumar et al [2003] and van Bentum & Geurts 

[2015] measured the performance on a high-rise building and found similar results. 

It can be concluded from essentially all laboratory and field studies that perfect pressure 

equalization at every moment is rarely achieved in practice. However, in some cases most 

of the instantaneous pressure difference acting on the enclosure may be equalized, 

leaving only a small and brief residual pressure difference.   

Laboratory, simulation and field studies can be summarized to conclude that the degree 

of equalization (or pressure moderation) depends on two general classes of factors: 

A. the enclosure system characteristics, and 

B. the nature of the wind loading. 

The enclosure system characteristics (A) can be further sub-divided into categories of 

characteristics that: 

I. minimise the volume of flow required to achieve pressure equalisation, 

and 

II. maximise the ease of flow of air into the chamber.  

Factors included under the first category (I) of enclosure characteristics are: 

1. air barrier leakage, or more precisely, the nature and magnitude of leakage; 

2. the volume of air in the chamber; 

2. the spatial extent of the chamber, i.e. compartmentalisation; and  

3. chamber deformability (or stiffness, including the flexibility of both the 

cladding and the air barrier);  

The second category of enclosure characteristics (II) includes factors such as: 

4. venting, or more precisely the nature, magnitude, and spatial distribution of 

cladding air permeance; and 

5. the air flow characteristics within the chamber. 

The wind load characteristics (B) that affect pressure moderation are: 

1. the mean pressure across the enclosure system; 

2. the mean gradients (in two dimensions) across the exterior of each 

compartment; 

3. the time-varying pressures across the system (i.e., speed of gusts); and 

4. the instantaneous pressure field acting across the exterior of each 

compartment (i.e., the severity and duration of spatio-temporal pressure 

variations). 
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All of these four characteristics are strongly dependent on the building shape, 

size, orientation and the nature of the upwind topography 

Figure 12 shows the well known fact that wind velocity at a point in space varies with time 

and can be described as a normal distribution upwind of the building (shown). The 

resulting pressure variations on a building face are similar but modified as they are 

influenced by building aerodynamics. The term turbulence intensity is defined as the 

standard deviation of the windspeed about the mean. Literature results suggest 

turbulence intensity can vary from below 10% to more common values of 25% or more.  

A significant amount of the research literature found examines how to predict or test the 

pressure response of an air cavity to spatially uniform but time-varying exterior pressure.  

By the 1990’s the National Research Council of Canada [e.g., Poirier et al 1992] and others 

[Alqhoury 1990, Ganguli & Quirouette 1987] were publishing the response of wall 

pressures to carefully controlled time-variant pressure waves.   

 

Figure 12: Example of the variation of windspeed at a point in space, and metrics used to 

describe this 

That spatially-variable pressures (Figure 13) can influence the pressure experienced by a 

wall system, and hence its pressure equalization performance was known from relatively 

early times. For example, Dalgliesh and Garden [1968] described this challenge: 

“ … pressure equalization is not always achieved in a cavity which is open at two or 

more locations. The cavity must be closed at strategic locations to prevent air flow 

behind the outer screen.  Knowledge of both the overall and local pressure variations 

is necessary for full exploitation of the principle of pressure equalization as a means 

of controlling rain penetration”.   
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Figure 13: Average wind pressure over the face of a cuboidal building plotted as the 

percentage of total stagnation wind pressure for wind acting at 0°, 30° and 45° to the face 

(adapted from ASHRAE) 

Much more sophisticated methods and wind tunnel tests were used by Inculet et al [1996, 

1997] to investigate compartmentalization. They proposed recommendations, but the 

stringent size limitations at the perimeter (1.0 m compartment size or less) meant these 

have not been adopted. 

Measuring and reporting pressure equalization performance is more complex and 

challenging than might be assumed. The ratio of the pressure across the cladding to the 

total pressure across the wall is a good measure of pressure equalization. However, this 

measure varies significantly with the magnitude and direction of the applied wind 

pressure, the speed of the wind gust, the direction (negative or positive pressure) and the 

spatial extent of gusts. Hence, although the Pressure Equalization Factor (PEF) is likely the 

most commonly used term, its definition varies significantly between researchers. To 

respond to the major influence of wind gust duration, frequency-domain methods were 

developed (Inculet & Davenport 1994, Straube & Burnett 1997). While very effective for 

analysing complex field data, results in the frequency domain strictly only apply to 

specific wind directions for a given building shape and depend somewhat on wind speed. 

4. 1 Summary  

There is a consensus on the physical characteristics and environmental factors influencing 

pressure equalization performance. However, the relative impact of each factor cannot be 

predicted with as much confidence. 

There is sufficient knowledge to calculate, with reasonable accuracy, the pressure 

equalization performance of a well-built sample when exposed to spatially uniform 

pressures dynamically varied as a sine wave.  Current test methods (such as AAMA 508) 
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impose spatially uniform and simple air pressure waves that do not correlate with 

measured field performance. Although research into the significant impact of spatially 

varying pressures has progressed in the last decade, predicting, and understanding field 

performance remains at an early stage. 

In practice the role of pressure equalization as a supplement to drainage (and WRB’s) 

rather than an alternative remains confusing to many architects and engineers. Education 

and consistent industry guidelines should be able to clarify this. 

Topic 5: Testing and Evaluation  

Managing rain penetration of building enclosures has been noted as a challenge from the 

beginning of recorded history. However, like most human endeavours, science began to 

be applied to the study and control of rain penetration in the 20
th

 century. In the US, 

Fishburn [1938] produced a detailed early study that developed and reported on testing of 

masonry wall systems (the dominant solution then) and how the mass (storage) strategy 

of rain penetration control could be applied.   

In much of North America and Europe three categories of test standards were developed: 

one for windows and doors, one for walls (usually masonry) and later one for curtainwalls.  

Even as early as the 1950s it was recognized that different test standards were needed for 

the two vastly different kinds of vertical enclosures:  masonry walls and the glass filled 

windows installed within them.   

In Canada Ritchie was investigating the use of small specimens for masonry walls in 1958, 

while Svendsen  in Norway was working on a window test apparatus. Also in this year, the 

United States’ Aluminum Window Manufacturers Association (AWMA) created a spray rack 

with a series of commercially available nozzles placed in a grid pattern. 

Within 4 years, Birkeland and Svendsen [1962] reported on a complex Norwegian 

apparatus that moved spraying nozzles up and down a masonry wall to mimic wind-driven 

rain. Interestingly, his paper also reported extensively on the measured driving rain 

characteristics in that country.  

By 1968 Sasaki and Wilson in Canada were proposing a standard window testing approach 

after comparing a number of spray rates and test durations: the 15 minute test using 

uniform spray grids became the standard for windows around this time. It is worth noting 

that their research showed that results were similar after 30 minutes of testing, but close 

enough that the practical value of a shorter duration of 15 minutes became the norm. 

In 1967 the ASTM E331 Tentative Method of Test for Water Resistance of Windows by 

Uniform Static Air Pressure Differential was published for windows and three years later 

was modified to include application to curtain walls and doors. The standard has seen 

very little change since then and is at the core of most North American standards. ASTM 

E547, Test for Water Penetration of Exterior Windows, Curtain Walls, and Doors by Cyclic 

Static Air Pressure Differential followed in 1975 and explicitly noted its application to 

curtainwalls. 

As a result of this work two different groups of standards were developed, one for testing 

windows (e.g., ASTM E331, BS EN 1027) and one for testing masonry walls (e.g. ASTM 

E514). The British released BS 4315 Part 1 in 1968 for windows, and BS 4315 Part 2 in 

1970 for masonry walls. Today, EuroNorms, prefaced with EN, provide standards for the 
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entire European Union.  Over time curtainwalls, which tend to be larger, include integrated 

structural resistance and accommodate movement, have developed their own series of 

standards such as AAMA 501.1-94 Standard Test Method for Exterior Windows, Curtain 

Walls and Doors for Water Penetration Using Dynamic Pressure. Omnibus standards such 

as Euro Norm 13830 Curtain Walling and AS/NZS 4284:2008 Testing of building facades 

include a series of tests to cover rain resistance, airtightness, structural properties, etc.  

Laboratory rain penetration testing is most commonly conducted for compliance with 

specific project specifications (for large buildings) or local code requirements.  Most rain 

penetration tests are intended to provide repeatable results in a laboratory environment 

rather than replicate performance in the field.  This characteristic, repeatability, is critical 

for quality control testing and comparisons between systems. However, it is usually not 

possible to directly translate the results of laboratory performance to performance in the 

field and this is sometimes explicitly stated in test standards. Instead, using laboratory 

test data requires proper interpretation of the test results, and consideration of the 

imposed test conditions and the intended use of the assembly tested.   

The concept of rain penetration testing is simple - water, simulating rain, and air 

pressures or air flows, simulating wind, are imposed on a specimen. However, within this 

basic construct there are many different test protocols and choices to be made. There are 

dozens of rain penetration test standards and protocols.  

The factors that vary between different test protocols include:  

• the nature and quantity of water application;  

• the nature (dynamic, static, spatially uniform or variable) and magnitude of the air 

pressure difference; and  

• the specimen to be tested, especially its size and the number of features 

included.  

In addition, there are supplemental choices about design of the apparatus, including how 

observations of the performance are to be made (for example, whether these are limited 

to visual observations, or incorporate quantitative data) and, if the test is a pass/fail 

assessment of the assembly, the evaluation criteria to be used.  

Each of the testing standards and protocols, although following the same basic approach, 

uses a different combination of experimental design choices.  

Current research is highlighting the fact that existing test standards do not directly apply 

to drained and ventilated walls [Arce et al 2019, Krogstad 1990, Baskaran & Brown 1995, 

Bitsuamlak et al 2009, Matthews et al 1996]. Some drainage and cavity ventilation test 

standards for specific applications have been developed since 2000 (see Topic Z2 and Z3).  

For example,  

• ASTM C1715-09 Standard Test Method for Evaluation of Water Leakage 

Performance of Masonry Wall Drainage Systems,  

• ASTM E2925-19a. Standard Specification for Manufactured Polymeric Drainage 

and Ventilation Materials Used to Provide a Rainscreen Function, and 

• ASTM E2273-18. Standard Test Method for Determining the Drainage Efficiency of 

Exterior Insulation and Finish Systems (EIFS) Clad Wall Assemblies. 
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Drainage testing methods for other cladding systems have not been standardized but 

developed and applied to many systems by researchers [Smegal 2006, Straube & Smegal 

2007, Onysko 2007, Van Linden et al 2022] 

Two relatively new standards have been developed that are directly relevant to 

rainscreens: AAMA 508 Voluntary Test Method and Specification for Pressure Equalized 

Rainscreen Wall Cladding Systems and AAMA 509 Voluntary Test and Classification 

Method for Drained and Back Ventilated Rainscreen Wall Cladding Systems.  These 

standards both reference ASTM E331 for rain penetration resistance, and do not quantify 

or measure ventilation. AAMA 508 is the only standardized enclosure pressure 

equalization test method. This test method imposes a spatially uniform pressure of a 

single frequency and hence does not reflect our understanding of wind loads on pressure 

equalization described in Topic 4.  AAMA 508 also defines failure as when water contacts 

the water resistant barrier (WRB) – all the effort invested in producing and testing WRBs is 

rendered irrelevant by the 508 standard.  

Both standards require prescribed “failures” in the air barrier (that is, they imposed 

significant air leakage) as part of the specimen.  While important developments, these two 

standards apply ideas from the 1980s (especially Gill & Anderson [1988]), do not address 

the importance of spatial variation, do not consider the way in which WRBs are commonly 

used today, and do not address ventilation at all.  

5.1 Hygrothermal models  

Evaluation of building enclosure assemblies is now commonly conducted with the air of 

hygrothermal models. ASHRAE Standard 160 provides some guidance for modeling rain 

penetration, which suggests water be added to layers within an assembly to predict its 

tolerance to rain leaks.  Topic 6 provides a summary of the research that aims to estimate 

the magnitude of these leaks.  Some research has also been conducted [e.g. Moore & 

Lacasse 2020] to guide the modeling of rain penetration and this work has highlighted 

the importance of understanding the magnitude and nature of the rain penetration (Topic 

6) and environmental loads such a wind-driven rain and wind pressures (Topic 7).  

5.2 Recommendations  

New consensus standards are needed to address the current global move beyond perfect 

barrier (glass), mass (masonry), and perfect barrier with drained joint (curtainwall) 

systems towards drained and often ventilated enclosure walls. There is little to no 

research that answers how much water can pass the cladding and enter the drainage 

system or how much water on the Water Resistant Barrier is acceptable, or standards for 

defining the ventilation performance of a system. 

Topic 6: Rain penetration mechanisms 

As a primary goal of rainscreen systems is the control of rain penetration, the body of 

knowledge surrounding the physics and practicality of rain penetration was also reviewed. 

The literature categorized as Topic 6 relates in most cases to rain penetration 

mechanisms applied to rain screens, i.e., there is a focus on drainage and air-pressure 

driven penetration. 
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Garden [1963] again is a seminal paper that briefly listed six different mechanisms, a list 

that has been echoed countless times since. The original Garden document included 

dimensions for the openings for which the mechanisms applied: in most subsequent 

documents these relevant dimensions are missing. This is relevant as there remains 

confusion in practice about the role of capillary forces, gravity and air pressure in rain 

penetration. 

 

Figure 14: Rain penetration forces (adapted from AAMA [2004] and Garden [1963]) 

For a time, research into rain penetration of wall assemblies ignored the likelihood of 

gaps and imperfections.  Around 2000, along with the embrace of drainage and second 

lines of defense Lacasse et al [2003, 2007, w/ Armstrong 2009], Sahal & Lacasse [2005], 

Salazano [2010], Lopez et al [2011], Ollson [2014, 2015, 2018], Ngudjiharto et al [2014], 

Ngudjiharto [2015], and many others began the investigation of leakage rates and factors 

influencing these through a range of common assemblies and defects.  This research is 

different than many of the older references in that the more recent work attempts to 

quantify leakage rates, albeit usually under unrealistic levels of rain deposition and air 

pressure differences. 

Research into the physics of rain penetration mechanisms has continued and is a current 

active area. Recent work of note has been done by Van den Bossche [2013] and his 

collaborators [e.g., w/ Janssens 2008, /w Lacasse 2012] and Lacasse et al [2003, 2007, w/ 

Hiroyuki 2009, van Linden 2022]. This work has explored the physics behind water 

penetration of cracks and openings in walls with and without air pressure differences. 

Although it may be surprising, the amount of water that might penetrate a known opening 

is difficult to predict with current knowledge [Stover et al 2022]. 
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6.1 Summary  

The basic mechanisms of rain penetration are well known to science, but not always well 

known to practitioners. There is a useful and growing body of research to provide leakage 

rates for common defects, but almost none of this data was collected with realistic 

combinations of likely rain and air pressures. Correlating test leakage rates and locations 

with natural field exposure leaks has not been undertaken at anything but the most 

general level. This lack may be the most significant knowledge gap in this topic. 

Topic 7: Climate and Exposure  

This is a major topic of study that is applicable to all types of building enclosures, 

structural design, cladding selection, paint choice, etc.  However, the focus of the 

documents for the review in this category was rain deposition on walls (wind driven rain) 

and local wind pressure loads. 

Driving rain has been scientifically studied for over a century. Modern English-language 

work by Lacy [1965] and others [Marsh 1977] (Figure 15) was widely used by researchers. 

The research and experience was eventually developed into a British standard BS 8104: 

Code of Practice for Assessing Exposure of Walls to Wind-Driven Rain (and ISO 15927). 

Scandinavian and German research (e.g., Schwarz 1973, Frank 1973) were developing 

useful knowledge in parallel.  

After a lull, research activity picked up with more detailed work aimed at estimating 

driving rain deposition on buildings. Work by Kuenzel [1994], Straube [1999], Straube and 

Burnett [2000], and Blocken and Carmeliet [2000,2004] formed the foundation of 

practitioner-friendly guidance developed by Straube and Schumacher [2005] and Cornick 

and Lacasse [2004, 2010]. Recently work has continued to study the impact of different 

building shapes (Figure 16) and overhangs on full-scale buildings in the field [e.g. Ge and 

Krpan 2007, Kubilay 2014, Ge and Stathopoulos 2017, Ge and Chiu 2017, Smegal et al 

2014, Abu-Zidan et al 2021]. 

Wind pressure distribution on buildings is complex but has been studied for reasons of 

structural design for many years and has a rich body of scientific and engineering 

knowledge. Perhaps because of the focus on structural design, there is a surprising lack 

of clear consensus of what air pressures should be considered for driving rain penetration 

of facades. In the last decades the co-incidence of wind and rain, the intensity, duration 

and frequency of driving rain has begun to receive more attention [Tsimplis 1994, Sahal 

et al 2008, Van Den Bossche et al 2013, Xia et al 2021]. 
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Figure 15: Early overhang sheltering research results from the UK [Marsh 1977]  

The figure plots the amount of driving rain collected in a natural exposure test rig over 

time at different heights and when exposed to different wind speeds.  Higher winds result 

in more rain water deposited, but the rain was concentrated at the top of wall, especially 

during high winds and with small overhangs.  

 

Figure 16: Example of driving rain shielding caused by interacting buildings [Carmeliet 

2019]. Wind speed distribution on left, rain deposition on right. 



 

  Page 27 

The pressure levels chosen for structural design purposes, although widely available and 

standardized, are not very relevant to water penetration testing. Pressures for structural 

design purposes are by necessity, rare events (e.g., once-in-50 years) and short duration 

(a few seconds). If they are exceeded, even for a few seconds, the building can collapse, 

or at least sustain substantial damage. 

Selecting air pressures for rain penetration testing is completely different. First, the 

likelihood of very high wind pressures coincident with driving rain is a statistically less 

likely event than just high wind pressures.  Second, and more significantly, rain leakage is 

clearly tolerable for periods of time far longer than 3 seconds in fifty years. Even the worst 

hour every 5 or 10 years might be considered an unreasonably high target for glass and 

metal systems with no moisture storage. For opaque enclosure systems comprised of 

absorbent materials, such as wood, stucco, and masonry, leakage into moisture sensitive 

components (like wood or light gauge steel framing) may occur for as much as several 

hours every few months, provided sufficient safe storage capacity is available and drying 

is allowed to occur. 

Although countries such as Canada (in the National Building Code) and New Zealand 

[Overton 2013] publish the pressures during the worst hour of wind-driven rain in five 

years, more frequent events (eg annually or semi-annually) are implicated in most in-

service rain leakage.  Little information is available for these more likely events to guide 

testing and evaluation. The research conducted shows that wind pressures during rainfall 

drop significantly for rain events that occur only one hour every second or fifth year 

(Figure 17). 

 

Figure 17: Wind pressure during rain as a function of return period for five US cities 

[adapted from Cornick & Lacasse 2010] 

Selecting high air pressures as “proof” pressures for rain penetration testing is reasonable 

during product development and mock-up testing to provide assurance that the system 

under test will perform at the lower more likely pressures to be experienced in service. 
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However testing under pressures that are too high has the disadvantage that rain leakage 

paths and mechanisms that are different than in service can act, thereby disguising actual 

performance in the field. In practise it is usually much more fruitful to investigate the 

consequences of material aging (e.g., sealant debonding), workmanship errors (e.g., 

fishmouths), and structural movement (e.g., deflection cracks and bulging): it is difficult 

to “test” for these latter very practical issues. 

7.1 Summary  

Although precision is difficult to achieve, useful and practical estimates of wind driven 

rain deposition on facades are easy to create. Research continues to provide more detail 

regarding the influence of particular building shapes and features. 

The air pressures that occur over a building façade are well understood, but the duration 

and magnitude of these pressures as they relate to return periods of interest for rain 

penetration are not well researched. Such data is needed and useful for the development 

of testing parameters but information for events more frequent than one hour every five 

years are difficult to find. 

Although not thoroughly explored in the literature review, climate change is beginning to 

impact the frequency, intensity, and duration of wind and rain. The nature of this change 

and its significance for rainscreen wall design has not been studied at any depth but may 

become important. 

Closure 

This extensive literature search was wide-ranging and deep. However, there are certain to 

be documents not included that may be useful, especially those in languages other than 

English.  Although the terminology and the focus of research and concern around the 

topic of rainscreens has changed over the years there is a large body of published 

research and knowledge.  The volume of information in the documents listed is 

prodigious, but like all areas of study there remains a lack of consensus or clarity on 

many issues. Perhaps what is more surprising is that there is strong consensus on some 

topics that does not appear to be reflected in the knowledge of current practitioners and 

researchers. 

We hope that this list of resources will help move research forward and provide the basis 

for practice guidelines. 

Yours truly, 

John Straube | PhD, P.Eng. 

Principal, Senior Building Science 

Specialist  

jfstraube@rdh.com 

RDH Building Science Inc. 

Reviewed by 

Jonathan Smegal | M.A.Sc. 

Associate, Senior Building Science Consultant  

jsmegal@rdh.com 

RDH Building Science Inc. 
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